Lacunary series and stable distributions

نویسندگان

  • I. Berkes
  • R. Tichy
چکیده

By well known results of probability theory, any sequence of random variables with bounded second moments has a subsequence satisfying the central limit theorem and the law of the iterated logarithm in a randomized form. In this paper we give criteria for a sequence (Xn) of random variables to have a subsequence (Xnk) whose weighted partial sums, suitably normalized, converge weakly to a stable distribution with parameter 0 < α < 2.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on lacunary series in $mathcal{Q}_K$ spaces

In this paper, under the condition that $K$ is concave, we characterize lacunary series in $Q_{k}$ spaces. We improve a result due to H. Wulan and K. Zhu.

متن کامل

Lacunary Fourier series and a qualitative uncertainty principle for compact Lie groups

We define lacunary Fourier series on a compact connected semisimple Lie group G. If f ∈ L1(G) has lacunary Fourier series and f vanishes on a non empty open subset of G, then we prove that f vanishes identically. This result can be viewed as a qualitative uncertainty principle.

متن کامل

Behavior of Lacunary Series at the Natural Boundary

We develop a local theory of lacunary Dirichlet series of the form ∞

متن کامل

Lacunary Series in Qk Spaces

Under mild conditions on the weight function K we characterize lacunary series in the so-called QK spaces.

متن کامل

On the Absolute Convergence of Small Gaps Fourier Series of Functions

Let f be a 2π periodic function in L[0, 2π] and ∑∞ k=−∞ f̂(nk)e inkx be its Fourier series with ‘small’ gaps nk+1 − nk ≥ q ≥ 1. Here we have obtained sufficiency conditions for the absolute convergence of such series if f is of ∧ BV (p) locally. We have also obtained a beautiful interconnection between lacunary and non-lacunary Fourier series.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014